矩阵可交换开题论文(矩阵的可交换问题的研究现状)
大家好,今天小编关注到一个比较有意思的话题,就是关于矩阵可交换开题论文的问题,于是小编就整理了1个相关介绍矩阵可交换开题论文的解答,让我们一起看看吧。
1、两个矩阵可交换的充要条件?
由矩阵的理论可知,矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩AB有意义时,矩阵BA未必有意义,即使AB, BA都有意义时它们也不一定相等。但是当A, B满足一定条件时,就有AB= BA,此时也称A与B是可交换的。 扩展资料
1、设A、B至少有一个为零矩阵,则A、B可交换;
2、设A,B至少有一个为单位矩阵则A、B可交换;
3、设A,B至少有一个为数量矩阵,则A、B可交换;
4、设A,B均为对角矩阵,则A,B可交换;
5、设A,B均为准对角矩阵准对角矩阵是分块矩阵概念下的`一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵,则A,B可交换;
6、设A*是A的伴随矩阵,则A*与A可交换;
7、设A可逆,则A与其逆矩阵可交换;
注:A的逆矩阵经过数乘变换所得到的矩阵也可以与A进行交换。
8、A^n(n=0,1。。。),n属于N、可与A^m(m=0,1。。。),m属于N、交换。这一点由矩阵乘法的结合律证明。
由矩阵的理论可知,矩阵的乘法不同于数的乘法,矩阵的乘法不满足交换律,即当矩AB有意义时,矩阵BA未必有意义,即使AB, BA都有意义时它们也不一定相等。但是当A, B满足一定条件时,就有AB= BA,此时也称A与B是可交换的。nbsp;
矩阵可交换的情况有很多种:
1 A,B 均对称阵,则AB 为对称阵是AB=BA 的充要条件 2 A ,B互为逆矩阵则AB = BA = E 3 矩阵A的最小多项式等于其特征多项式,那么AB=BA等价于B可以表示成A的多项式B=f(A)
到此,以上就是小编对于矩阵可交换开题论文的问题就介绍到这了,希望介绍关于矩阵可交换开题论文的1点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:3801085100#qq.com,#换成@即可,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.szjyj.comhttp://www.szjyj.com/zonghe1/32666.html