1.  > 考研

考研级数求和函数常用公式,考研常用级数求和公式大全

考研级数求和函数常用公式,考研常用级数求和公式大全

本篇文章给大家谈谈考研级数求和函数常用公式,以及考研常用级数求和公式大全对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享考研级数求和函数常用公式的知识,其中也会对考研常用级数求和公式大全进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

  1. 考研必备数学公式?

1、考研必备数学公式?

一、常用诱导公式

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  公式二:

  设α为任意角,π α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  注意:在做题时,将a看成锐角来做会比较好做。

  诱导公式记忆口诀:

  上面这些诱导公式可以概括为:

  对于π/2*k±α(k∈Z)的三角函数值,

  ①当k是偶数时,得到α的同名函数值,即函数名不改变;

  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇变偶不变)

  然后在前面加上把α看成锐角时原函数值的符号。

  (符号看象限)

  例如:

  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

  所以sin(2π-α)=-sinα

上述的记忆口诀是:

  奇变偶不变,符号看象限。

  公式右边的符号为把α视为锐角时,角k·360° α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函数值的符号可记忆

  水平诱导名不变;符号看象限。

  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

  这十二字口诀的意思就是说:

  第一象限内任何一个角的四种三角函数值都是“+”;

  第二象限内只有正弦是“+”,其余全部是“-”;

  第三象限内切函数是“+”,弦函数是“-”;

  第四象限内只有余弦是“+”,其余全部是“-”.

  上述记忆口诀,一全正,二正弦,三内切,四余弦

  还有一种按照函数类型分象限定正负:

  函数类型第一象限第二象限第三象限第四象限

  正弦...........+............+............—............—........

  余弦...........+............—............—............+........

  正切...........+............—............+............—........

  余切...........+............—............+............—........

二、同角三角函数关系

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法:

  六角形记忆法:

  构造以#34;上弦、中切、下割;左正、右余、中间1#34;的正六边形为模型。

  (1)倒数关系:对角线上两个函数互为倒数;

  (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

  (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

  (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

三、两角和差公式:

  1、两角和与差的三角函数公式:

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  2、二倍角公式:

  二倍角的正弦、余弦和正切公式(升幂缩角公式)

  sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan2α=2tanα/[1-tan^2(α)]

  3、半角公式:

  半角的正弦、余弦和正切公式(降幂扩角公式)

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1 cosα)

  4、万能公式:

  sinα=2tan(α/2)/[1 tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  万能公式推导:

  附推导:

  sin2α=2sinαcosα=2sinαcosα/(cos^2(α) sin^2(α))......*,

  (因为cos^2(α) sin^2(α)=1)

  再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

  然后用α/2代替α即可。

  同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

  5、三倍角公式:

  三倍角的正弦、余弦和正切公式:

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  三倍角公式推导:

  附推导:

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  三倍角公式联想记忆:

  记忆方法:谐音、联想

  正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

  余弦三倍角:4元3角减3元(减完之后还有“余”)

  Ps:注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  另外的记忆方法:

  正弦三倍角:山无司令(谐音为三无四立)三指的是#34;3倍#34;sinα,无指的是减号,四指的是#34;4倍#34;,立指的是sinα立方

  余弦三倍角:司令无山与上同理

  6、和差化积公式

  三角函数的和差化积公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  三角函数的积化和差公式:

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

  和差化积公式推导:

  附推导:

  首先,我们知道sin(a b)=sina*cosb cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

  我们把两式相加就得到sin(a b) sin(a-b)=2sina*cosb

  所以,sina*cosb=(sin(a b) sin(a-b))/2

  同理,若把两式相减,就得到cosa*sinb=(sin(a b)-sin(a-b))/2

  同样的,我们还知道cos(a b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb sina*sinb

  所以,把两式相加,我们就可以得到cos(a b) cos(a-b)=2cosa*cosb

  所以我们就得到,cosa*cosb=(cos(a b) cos(a-b))/2

  同理,两式相减我们就得到sina*sinb=-(cos(a b)-cos(a-b))/2

  这样,我们就得到了积化和差的四个公式:

  sina*cosb=(sin(a b) sin(a-b))/2

  cosa*sinb=(sin(a b)-sin(a-b))/2

  cosa*cosb=(cos(a b) cos(a-b))/2

  sina*sinb=-(cos(a b)-cos(a-b))/2

  有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。

  我们把上述四个公式中的a b设为x,a-b设为y,那么a=(x y)/2,b=(x-y)/2

  把a,b分别用x,y表示就可以得到和差化积的四个公式:

  sinx siny=2sin((x y)/2)*cos((x-y)/2)

  sinx-siny=2cos((x y)/2)*sin((x-y)/2)

  cosx cosy=2cos((x y)/2)*cos((x-y)/2)

  cosx-cosy=-2sin((x y)/2)*sin((x-y)/2)

在考研数学中,常用的求和公式有:

1. 等差数列求和公式:

nbsp; nbsp;- 前n项和:$S_n = \dfrac {n}{2}(a_1 a_n)$

nbsp; nbsp;- 通项公式:$a_n = a_1 (n-1)d$

2. 等比数列求和公式(首项不为0):

nbsp; nbsp;- 前n项和:$S_n = \dfrac {a_1(1-q^n)}{1-q}$

nbsp; nbsp;- 通项公式:$a_n = a_1 \cdot q^{(n-1)}$

3. 幂级数求和公式:

nbsp; nbsp;- 等比数列求和公式(绝对值小于1):$S = \dfrac{a_1}{1-q}$

4. 奇数、偶数求和公式:

nbsp; nbsp;- 前n个连续奇数之和:$n^2$

nbsp; nbsp;- 前n个连续偶数之和:$n(n 1)$

5. 等差数列与等比数列的混合求和公式:

nbsp; nbsp;- $\dfrac{S_n}{a_1}=\dfrac{S}{a_1} \dfrac{S}{a_2} \cdots \dfrac{S}{a_n}$,其中S为公差为1的等差数列或公比为1的等比数列前n项和。

6. 二项式系数求和公式(组合恒等式):

nbsp; nbsp;- $\sum_{k=0}^{n}{C_n^k} = 2^n$

7. 等差数列与等比数列的和的乘积:

nbsp; nbsp;- $S_n \cdot P_n = a \cdot q^n$

这些是考研数学中使用较多的求和公式,但在具体题目中可能还会有其他的求和公式。

导数公式

1(tgx)#39;=secx(arcsinx)#39;=√1-x2ctgxr)=-csc x1(secx)#39;=secx.tgx

(arccos.x)#39;=- (cscx)=-cscx.ctgx

1(ax)=In(arctgx)#39;=1 x1 (logx)#39;=arcctgx)=- xIn a1 x2

基本积分表达公式

三角函数的有理式积分公式

初等函数公式

极限公式

三角函数的诱导公式

和差化积公式

和差角公式

到此,以上就是小编对于考研级数求和函数常用公式的问题就介绍到这了,希望介绍关于考研级数求和函数常用公式的1点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:3801085100#qq.com,#换成@即可,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.szjyj.comhttp://www.szjyj.com/pqsj/37044.html